Fighting disease with technology: NASA helps WHO track malaria outbreaks using satellite data
03/19/2020 // Franz Walker // Views

Being able to track the spread of disease outbreaks is an important step in keeping them under control. Now, a new "weapon" has entered the fray that can give public health officials and pest control companies alike a bird's eye view of how these diseases are spreading -- satellites.

The National Aeronautics and Space Administration (NASA) has been working with foreign governments and World Health Organization (WHO) to help track the spread of mosquito-borne infectious diseases such as malaria. Outbreaks of these diseases can spread quite easily thanks to mosquitoes being airborne carriers, unlike other disease-carrying pests such a rats.

As part of the program, NASA has helped set up an early warning system in the Southeast Asian country of Myanmar, which uses satellite data to catch impending outbreaks. In addition, the agency is integrating its satellite observations into a South America-based statistical model to combat mosquito-borne diseases in Peru.

Tracking ideal mosquito breeding grounds

To forecast whether or not an outbreak of malaria may be imminent, NASA is using the satellites to monitor whether or not the environment in certain regions is conducive to the spread of mosquitoes. These regions are usually those that are warm and wet, making them ideal mosquito breeding grounds. Using data from the satellites, health officials involved can monitor temperature, soil moisture and precipitation in these regions across the globe, including the ones where NASA is involved in, in Myanmar and Peru.

Satellites tell only part of the story

To get the full picture of how a malarial outbreak occurred or may occur, satellite data isn't enough. NASA researchers admit that they still need population data to fully understand the spread of the disease.

Brighteon.TV

Malaria symptoms don't often appear until several weeks after a person has been bitten by an infected mosquito. If that person travels frequently, they may show the symptoms of malaria in one location, even though they were actually bitten somewhere else.

In Peru, NASA researchers and Peruvian officials draw on observations on precipitation, as well as the movement of people before an outbreak. This information is then fed into detailed statistical models, including one developed by William Pan, of the Duke University Global Health Institute, and Ben Zaitchik, of the Johns Hopkins University Department of Earth and Planetary Sciences. Using the data from these, the health officials then deploy preventive measures, such as bed nets and indoor sprays, in the regions where the disease is most likely to break out. (Related: Mosquito begone: 5 Natural ingredients that work as a mosquito repellent.)

In Myamnar, a satellite-based malaria-forecasting system makes use of Landsat satellites to identify bodies of water that may potentially be mosquito breeding grounds. The data from these satellites is then fed, alongside other observations, into the Myanmar Malaria Early Warning System (MMEWS), a system developed by Tatiana Loboda, an assistant professor in the University of Maryland Department of Geography. MMEWS doesn't observe entire regions, however. Instead, it looks for changes to particular areas, and also takes into consideration population density, socioeconomic status and military conflict occurring in these areas.

Combining satellite data with other sources for dynamic monitoring

The projects in Myanmar and Peru demonstrate how combining satellite data with other observations can make for effective early warning systems against malaria. However, what they've achieved only scratches the surface of satellite data's potential in helping predict outbreaks of the diseases and other mosquito-borne illnesses.

Already, Loboda's MMEWS project is combining the data from satellite remote sensing with medical surveys and mosquito observations in an effort to learn more about the role that land cover and land use may play in determining how suitable a certain habitat is for mosquitoes. Using this, she hopes to create a system that would allow for the dynamic monitoring of regions at risk of malaria.

Sources include:

Space.com

Science.NASA.gov



Take Action:
Support Natural News by linking to this article from your website.
Permalink to this article:
Copy
Embed article link:
Copy
Reprinting this article:
Non-commercial use is permitted with credit to NaturalNews.com (including a clickable link).
Please contact us for more information.
Free Email Alerts
Get independent news alerts on natural cures, food lab tests, cannabis medicine, science, robotics, drones, privacy and more.
App Store
Android App
eTrust Pro Certified

This site is part of the Natural News Network © 2022 All Rights Reserved. Privacy | Terms All content posted on this site is commentary or opinion and is protected under Free Speech. Truth Publishing International, LTD. is not responsible for content written by contributing authors. The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. Truth Publishing assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms and those published here. All trademarks, registered trademarks and servicemarks mentioned on this site are the property of their respective owners.

This site uses cookies
Natural News uses cookies to improve your experience on our site. By using this site, you agree to our privacy policy.
Learn More
Close
Get 100% real, uncensored news delivered straight to your inbox
You can unsubscribe at any time. Your email privacy is completely protected.