Monday, October 02, 2006 by: NewsTarget
Tags: health news, Natural News, nutrition
The scientists, based at the Scottish Crop Research Institute (SCRI) and East Malling Research in Kent, UK, have used tracers to identify where and when vitamin C is produced in blackcurrant bushes and how it moves throughout the plant. Using different strains of blackcurrant plant the team can compare and analyse how the vitamin accumulates in the blackcurrant fruit as well as the limiting factors.
To date the research has discovered that starch that accumulates after the berries have been harvested plays a key role in determining vitamin C production the following year. The scientists are now adjusting carbohydrate levels across the entire plant to alter starch deposits to explore how this affects vitamin levels and fruit quality.
Dr Robert Hancock, the research leader at SCRI, said: "Understanding how and when vitamin C is produced and accumulates in the blackcurrant plants has clear benefits for the consumer. We can grow crops that produce juice that will have higher levels of vitamin C and a better taste. Vitamin C is vital to tissue growth and repair and gives a big boost to the immune system but because it dissolves in water the body cannot store it.
"We need to eat vitamin C rich food every day but people just do not get enough. Blackcurrants contain more vitamin C than oranges so boosting that even further can only be a good thing. Blackcurrant production has soared in the UK in the last few years as demand has rocketed across Europe. If we can help to improve the crop we can give UK farmers a better, sustainable product to sell that will ensure they have a competitive edge."
The project has another two years to run and there are still some key questions to be explored. Dr Hancock explained: "We have explored whether vitamin production takes place in the leaves or the blackcurrant fruit and answered important questions about why levels drop off as fruit ripens, just when we are about to eat it. Now we want to develop the techniques and knowledge we need to accelerate the breeding of super blackcurrant bushes."
The team have received £1.2M in funding through the Horticulture LINK programme. This has contributions from the Biotechnology and Biological Sciences Research Council (BBSRC), GlaxoSmithKline, the Horticulture Development Council and the Scottish Executive Environment and Rural Affairs Department (SEERAD).
Professor Nigel Brown, Director of Science and Technology at BBSRC, the UK's main public funder of research in the life sciences, commented: "BBSRC is a strong supporter of this type of research where basic plant science can help to improve the dietary and health benefits of popular foodstuffs. This is an example of how collaboration between different research groups with public and commercial research funding can produce real benefits for consumers, producers and the UK food industry."
Contact
Dr Robert Hancock, Scottish Crop Research Institute Tel: 01382 562731, email: [email protected]
BBSRC Media Office Matt Goode, Tel: 01793 413299, email: [email protected] Tracey Jewitt, Tel: 01793 414694, email: [email protected]
Get independent news alerts on natural cures, food lab tests, cannabis medicine, science, robotics, drones, privacy and more.
Permalink to this article:
Embed article link: (copy HTML code below):
Reprinting this article:
Non-commercial use OK, cite NaturalNews.com with clickable link.
Follow Natural News on Facebook, Twitter, Google Plus, and Pinterest
"Big Tech and mainstream media are constantly trying to silence the independent voices that dare to bring you the truth about toxic food ingredients, dangerous medications and the failed, fraudulent science of the profit-driven medical establishment.
Email is one of the best ways to make sure you stay informed, without the censorship of the tech giants (Google, Apple, Facebook, Twitter, YouTube, etc.). Stay informed and you'll even likely learn information that may help save your own life."
–The Health Ranger, Mike Adams