Monday, September 18, 2006 by: NewsTarget
Tags: computer chips, computing technology, health news
On Monday, researchers announced the creation of a silicon-based chip that can use laser light to transmit data between chips rather than wires. This means that computer designers may be able to overhaul the design of the average computer and pack chips more densely than ever before, in both home computers and giant data centers.
Although commercialization of the technology probably won't happen before the end of the decade, this leap means that the laser light, combined with metal wires, could make for a cheaper and more powerful national computing structure. The chips would cost just a few dollars each, and transmit data up to 100-times faster than the current laser-based optical transceivers which cost thousands of dollars and are massively slowed when the streams of data reach the conventional wire-based communications equipment.
In the report, published in the upcoming issue of Optics Express, the researchers said they managed their breakthrough by bonding a layer of light-emitting indium phosphide onto standard silicon chips, which are etched with light-wave channels that guide the laser information. The chip can then potentially send and receive hundreds, if not thousands, of bright lasers billions of times per second.
"This is a field that has just begun exploding in the past 18 months," said Eli Yablonovitch, a physicist at the University of California, Los Angeles, and a leading researcher in the field. "There is going to be a lot more optical communications in computing than people have thought."
As well as revolutionizing the current computing infrastructure, the Intel/UC research also shows that complete photonic devices can be created using standard chip-making machinery, although the chips are not all-silicon.
Previous attempts to bond standard silicon with light-emitting, exotic materials usually resulted in melted silicon, but the UC team experimented with a low-temperature technique that uses an electrically charged oxygen gas to create a 25-atom-thick layer of oxide on each material. The oxide layer is then heated, and fuses the two materials together.
"There has always been this final hurdle," said Mario Paniccia, director of the Photonics Technology Lab at Intel. "We have now come up with a solution that optimizes both sides."
A group of photonics industry experts were briefed on the technique, and agreed that it is a huge step toward achieving a long-sought-after commercialized union of silicon chips and optical lasers.
"Before, there was more hype than substance," said Alan Huang, a former Bell Laboratories researcher who is a pioneer in the field and now chief technology officer of Menlo Park, Calif. photonics start-up company Terabit Corp. "Now I believe this will lead to future applications in optoelectronics."
###
Get independent news alerts on natural cures, food lab tests, cannabis medicine, science, robotics, drones, privacy and more.
Permalink to this article:
Embed article link: (copy HTML code below):
Reprinting this article:
Non-commercial use OK, cite NaturalNews.com with clickable link.
Follow Natural News on Facebook, Twitter, Google Plus, and Pinterest
"Big Tech and mainstream media are constantly trying to silence the independent voices that dare to bring you the truth about toxic food ingredients, dangerous medications and the failed, fraudulent science of the profit-driven medical establishment.
Email is one of the best ways to make sure you stay informed, without the censorship of the tech giants (Google, Apple, Facebook, Twitter, YouTube, etc.). Stay informed and you'll even likely learn information that may help save your own life."
–The Health Ranger, Mike Adams